Gravitational Lensing

  1. Zwicky F: Nebulae as Gravitational Lenses, Phys. Rev. 51 (1937), 290
  2. Zwicky F: On the Probability of Detecting Nebulae which Act as Gravitational Lenses, Phys. Rev. 51 (1937), 679
  3. Sachs R: Gravitational Waves in General Relativity, VI. The Outgoing Radiation Condition, Proc. R. Soc. Lond. A 264 (1961), 309
    NB: (+ + + -). Very technical. Vacuum gravitational fields. Quasi-algebraic approach based on the Riemann tensor and the second Bianchi identities. Gives a covariant definition of vacuum gravitational fields with "asymptotically geodesic rays"; derives the propagation equations for the optical scalars of a geodesic null congruence. Proposed outgoing radiation condition: a bounded source field is free of mixed radiation at large distances if and only if it has asymptotically geodesic rays.
  4. Kristian J, R K Sachs: Observations in Cosmology, Astroph. J. 143 (1966), 379
    NB: Appearence of $E_{ab}$ and $H_{ab}$ as geometrical parameters rather than evolved dynamical quantities.
  5. Futamase T, M Sasaki: Light Propagation and the Distance-Redshift Relation in a Realistic Inhomogeneous Universe, Phys. Rev. D 40 (1989), 2502
  6. Bartelmann M: Highlights in Gravitational Lensing, Class. Quantum Grav. 10 (1993), S49
  7. Sasaki M: Cosmological Gravitational Lens Equation - It's Validity and Limitation, Prog. Theor. Phys. 90 (1993), 753
    NB: Invited paper. Exposes limitations of standard geometrical construction (Fermat principle) approach; then employs the null GDE in the geometrical optics approximation to provide a more solid basis for the lens equation.
  8. Seitz S, P Schneider, J Ehlers: Light Propagation in Arbitrary Spacetimes and the Gravitational Lens Approximation, Class. Quantum Grav. 11 (1994), 2345
    NB: Employs the null GDE in the geometrical optics approximation to derive the lens equation; then uses a Dyer-Roeder scheme to model lensing in an "on-average Friedmann universe".
  9. Swings J-P: Gravitational Lensing, Class. Quantum Grav. 11 (1994), A183
  10. Perlick V: Criteria for Multiple Imaging in Lorentzian Manifolds, Class. Quantum Grav. 13 (1996), 529
  11. Ellis G F R, B A C C Bassett, P K S Dunsby: Lensing and Caustic Effects on Cosmological Distances, Class. Quantum Grav. 15 (1998), 2345. Also: Preprint gr-qc/9801092.
  12. Holz D E, R M Wald: New Method for Determining Cumulative Gravitational Lensing Effects in Inhomogeneous Universes, Phys. Rev. D 58 (1998), 063501. Also: Preprint astro-ph/9708036.
  13. Virbhadra K S, D Narasimha, S M Chitre: Role of the Scalar Field in Gravitational Lensing, Astron. Astrophys. 337 (1998), 1. Also: Preprint astro-ph/9801174.
  14. Wambsganss J: Gravitational Lensing in Astronomy, Max-Planck-Gesellschaft Living Reviews Series, No. 1998-12
  15. Frittelli S, E T Newman: An Exact Universal Gravitational Lensing Equation, Phys. Rev. D 59 (1999), 124001. Also: Preprint gr-qc/9810017.
  16. Kling T P, E T Newman: Null Cones in Schwarzschild Geometry, Phys. Rev. D 59 (1999), 124002. Also: Preprint gr-qc/9809037.
  17. Virbhadra K S, G F R Ellis: Schwarzschild Black Hole Lensing, Preprint astro-ph/9904193.
  18. Claudel C-M: Cumulative Gravitational Lensing in Newtonian Perturbations of Friedman-Robertson-Walker Cosmologies, Proc. R. Soc. Lond. A 456 (2000), 1455. Also: Preprint gr-qc/0005097.
  19. Frittelli S, T P Kling, E T Newman: Spacetime Perspective of Schwarzschild Lensing, Phys. Rev. D 61 (2000), 064021. Also: Preprint gr-qc/0001037.
  20. Kling T P, E T Newman, A Perez: Iterative Approach to Gravitational Lensing Theory, Phys. Rev. D 61 (2000), 104007. Also: Preprint gr-qc/9908082.
  21. Kling T P, E T Newman, A Perez: Comparative Studies of Lensing Methods, Phys. Rev. D 62 (2000), 024025. Also: Preprint gr-qc/0003057.


Selected References
Last revision: Tue, 22-8-2000 (This page is under construction)